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Image analysis by pulse coupled neural networks 
(PCNN)—a novel approach in granule size 
characterization 

Osmo Antikainen, Kyriakos Kachrimanis, Stavros Malamataris, 

Jouko Yliruusi and Niklas Sandler 

Abstract 

A biologically inspired spiking neural network model, the pulse coupled neural network (PCNN), has
been applied for the first time in bulk particle characterization, and specifically in the characteriza-
tion of pharmaceutical granule size distributions. The PCNN was trained on surface images of phar-
maceutical granule beds, and the adjustable parameters (radius neuron interconnection, r0, linking
weight coefficient, b, local threshold potential, VΘ, and number of iterations) were successfully opti-
mized using design of experiments. As demonstrated with size fractions of granules, it was found
that the PCNN produced granule size-dependent signals. In general, a first highest and relatively
narrow peak located in the region of two to twelve iterations corresponded to smaller particle size,
while larger particles resulted in wider peaks and in highest (not first) peak at a range between 13
and 25 iterations. Better predictions, i.e. lower RMSEP (root mean squared error of prediction)
values, were obtained using high b value, low r0 and VΘ values, while the number of iterations had
to exceed 110 and the optimized model (RMSEP lower than 5) corresponded to PCNN variables:
r0 = 1, b = 0.4, VΘ = 2, and number of iterations = 150. The coefficient of determination (R2) of the
model was 0.94 and the predicted variation (Q2) was 0.91, while the Pearson correlation coefficient
between the predicted and the measured mean particle size by sieving for eight test batches was
0.98. These findings could be characterized as promising and encouraging for the further use of
image analysis by PCNNs in pharmaceutical bulk particle size and shape characterization. 

Images are produced with optical and other techniques, and consequently handled with vari-
ous methods after suitable image processing and used for numerous purposes. In pharma-
ceutical manufacturing, photographs or digital versions of images based on electron
scanning, on atomic force measurement or on photometry are used after suitable analysis
(image analysis) for evaluation of surface roughness and morphology of uncoated and
coated particles (tablets, pellets, granules and crystals), as well as for particle sizing and
shape description (Brewer & Ramsland 1995; Eriksson et al 1997; Kennedy & Niebergall
1997; Andrès et al 1998; Andersson et al 2000). Other methods used for particle size meas-
urement, e.g. sieving, Coulter counter and laser diffraction, cannot provide evaluation of
shape and surface roughness which besides size have significant effects on handling of dos-
age forms (tablets, granules, pellets) and on the processability of pharmaceutical particulate
materials, such as powders and suspensions. Grasa & Abanades (2001) have pointed out the
growing importance of obtaining solid concentrations from digitalized images in industries
handling bulk powders. Efforts to overcome limitations in image analysis and to develop
more useful applications of automated microscopy have been made within powder technology,
and lately the number of commercial off-line, in-line and on-line image analysis instru-
ments has increased. 

However, limitations in routine use of image analysis methods for particle characteriza-
tion exist and they are usually related to the relative slowness of the characterization pro-
cess, the large size of an image as a dataset and the great variety of methods that can be
chosen for overcoming these problems (Pons et al 1999). Ros et al (1997) have stated that
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the characterization of granular products with image analysis
is complex because of difficulty in the definition of the sam-
ple size, of need for sample dispersion and because of data
diversity that may be extracted from digital images. Particu-
larly in particle size and shape analysis only characteristics of
individual particles may be considered and the feature extrac-
tion procedure applied is of great importance. Most of the
aforementioned limitations can be overcome by considering
the use of a key attribute of a bulk particulate material, which
is a typical pattern of the field-of-view image called texture.
Texture is related to the distribution of the spatial variation in
gray scale levels of monochrome images and can be connected
to general bulk-particle characteristics (Bonifazi 1997). There-
fore, global measurements of the texture that is observed in an
image can portray information about the particle size. Smaller
particles form a finer texture and larger particles display
coarser textures. An advantage of textural methods is that
particles do not have to be identified individually. 

Recently, suggestion of novel image processing approaches
for more efficient image feature extraction has followed the
development of the “mammalian visual cortex models” after
progress in understanding of the visual cortex function in the
mammalian (cat’s) brain-region that receives information
from the eye. Particularly, the Pulse Coupled Neural Network
(PCNN) algorithm was developed that uses similar means as
the biological eye to extract essential information from
images and besides has self organizing abilities. It simulates
the neural activity in the cat’s visual cortex and results in
image-pulses created from an original image (Eckhorn et al
1990). Furthermore, improved applications of PCNN have
been reported. Lindblad & Kinser (1998) listed the different
approaches where PCNN was used including smoothing of
noisy images, segmentation, texture identification and edge
detection of images. Johnson & Padgett (1999) reviewed the
applications and implementations of PCNN thoroughly.
Kinser et al (2000) applied pulse image analysis with three-
dimensional chemical structural data and found it useful in
studies of structure property relationships. Åberg & Jacobs-
son (2001) also utilized the PCNN successfully in three-dimen-
sional quantitative structure–retention relationship modelling.
The PCNN was also used effectively in satellite image ana-
lysis (Waldemark et al 2000) and medical image processing
(Keller & McKinnon 1999). In previous reports, we have
shown that examination of pharmaceutical powders as larger
populations by employing undispersed samples through pro-
cessing surface images after forming beds or columns can be
advantageous (Laitinen et al 2000, 2002, 2003). A new opti-
cal imaging set-up was proposed and means to derive a
descriptive parameter of size and shape (grey scale difference
matrix) from undispersed granule surface images was sug-
gested employing multivariate modelling. This approach is
considered as advantageous because it removes the problems
related to sample dispersion, which often constitute the most
problematic stage. Finally, combination of this approach with
new tools suggested for effective compression of image
information may be advantageous for substantial image edge
and texture feature information for the case of pharmaceutical
particulate material e.g. in the analysis of particle size
and shape characteristics for screening of pharmaceutical
granulations. 

In this study a novel neural network approach related to
mammalian visual cortex models has been evaluated for
image feature extraction, exploiting surface images of packed
pharmaceutical granules. PCNN was used to create image
signatures that were one-dimensional feature vectors and they
functioned as fingerprints for images of different fractionated
and unfractionated granules produced with fluidized bed
granulation. The image signature vectors obtained were then
linked to size distribution data by employing multivariate
modelling. 

Materials 

Thirty-four different batches of granulations were used,
which were obtained by applying a fluidized bed method
under altered process conditions (Laitinen et al 2004). The
granulations were deliberately planned to produce different
kinds of mean particle sizes and size-distribution profiles to
be able to establish a relationship between PCNN spectra
and real particle size distributions. The particle size distri-
butions were measured with sieve analysis (10 min with
amplitude 6) employing a vibratory sieve shaker (Analysette
3pro, Fritsch, Oberstein, Germany) and the following
twelve sieves: 0.045, 0.071, 0.090, 0.125, 0.160, 0.250,
0.355, 0.500, 0.710, 1.000, 1.400, and 2.000 mm. The sam-
ple size for sieve analysis was 50 g and the results of weight
proportions were derived employing the “autosizer” pro-
gram. Also, sieve fractions of these granulations were used
as a test set to demonstrate the effect of size on PCNN spectra.
The sieve fractions were seven, namely: 0.125–0.160,
0.160–0.250, 0.250–355, 0.355–500, 0.500–0.710, 0.710–1.000,
1.000–1.400 mm. 

Imaging 

Images of granule batches (unfractionated and fractionated)
were taken with a surface imaging unit with a slightly modi-
fied procedure of that described by Laitinen et al (2003,
2004), which is described below. A fixed volume of granula-
tions was poured in a quartz sample cuvette (dimensions:
height 2 cm, breadth 1.2 cm) and tapped to give a completely
covered area against the cuvette wall. Images of three sample
replicas were taken (n = 3). The imaging unit consisted of a
light source and a monochrome CCD camera (JAI, CV-M50,
Copenhagen, Denmark) with a resolution of 576 × 768 pixels
and a lens objective, which was connected to a frame grabber
(WinTV, Hauppauge Computer Works, Hauppauge, NY) and
a Personal Computer running MatLab Image Acquisition
Toolbox (MatLab 6.5.1, Mathworks, Norwick, USA). The
light source was accurately positioned to light laterally the
imaging area and cast shadows on the surface. The image of
the sample cuvette was taken from a horizontal direction. The
illumination system included one lamp-housing, 50 W quartz
tungsten halogen lamp and a collimating lens assembly (Oriel
Instruments, Stratford, CT). A 50-mm lens objective and an
additional 40-mm extension tube were used. The distance

Materials and Methods 
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from the sample was 20 cm. The angle of illumination was
30° and the used power source voltage was 5.5 V. The dimen-
sions of the imaged area were 8 × 10 mm, and one pixel rep-
resented squares of approximately 10-mm side length. All
images were taken in a dark room with no disturbing light
sources. The calibration of the imaging conditions was made
through a program written for MatLab which controlled the
brightness of the images. 

Pulse Coupled Neural Network (PCNN) selection 

PCNN is a very simplified network of a single layer with local
lateral connections between neurons. The PCNN neuron (Eck-
horn neuron) is composed of multiple nodes which form a grid,
i.e. a 2 D-vector. Furthermore, the nodes are coupled with their
neighbours within a radius r0. The indices (i,j) indicate each indi-
vidual node in the grid (Becanovic 2000). The Eckhorn neuron
consists of a number of compartments, which include two input
compartments, a linking, L, and a feeding, F compartment (Fig-
ure 1). The network gets stimuli by both feeding and inhibitory
linking. The linking and feeding signals are combined in an
internal activation system, which builds up the signals until they
exceed a dynamic threshold. When this threshold is exceeded the
network fires an output signal, the membrane voltage, U. The
membrane voltage is then compared with a local threshold, Θ
(Lindblad & Kinser 1998). The output alters the threshold and
the linking and feeding neurons signals. The PCNN uses an
image as input, where each pixel is used as input to one neuron.
The output from each neuron is either one or zero indicating
whether it spikes or not. This output in question is then sent back
to the neuron itself and its neighbouring neurons. The spiking
means that neurons fire in synchrony in homogenous areas asso-
ciated in the input image. One of the natural features of the
PCNN is the fact that local interconnections between neurons
exist. Neurons have a tendency to fire in groups making segmen-
tation and edge detection possible in the image, while the itera-
tive nature of PCNN makes the groupings break up after several
iterations (Figure 2). This break-up is dependent on the textural
information and allows evaluation of the image’s texture by the
PCNN. After a finished cycle the PCNN generates a time series-
like one-dimensional vector (Figure 2), which serves as a “fin-
gerprint” of the input matrix (the source image) and can be used
for its classification (Johnson 1994). A full mathematical
description of PCNN was given by Lindblad & Kinser (1998).
The algorithm is performed by continuous iterations of the input
and output, and most important equations behind PCNN are:

In these equations S is the input stimulus i.e. the pixel
intensity in (i,j) position on the grid. It is computed from the
pixel intensity (i + k, j + l), in the pixel with coordinates (x,y).
F is the feeding and L is the linking compartment of the
neuron. There are three potentials or normalizing constants,
VL, VF and VΘ, for the linking, feeding and local threshold,
respectively. aF, aL and aΘ are time constants for feed, link
and dynamic threshold, respectively. M and W are the con-
stant synaptic weights and they are dependent on the distance
between neurons. Y stands for the output of the neuron and it
gets either the binary value 0 or 1. Θ is the dynamic thresh-
old, U is the internal activation of the neuron, and Θ is the
linking weight parameter. The one-dimensional time signal or
spectra is computed as a global array, G. During the cycle, the
internal activity and the output of every neuron is updated
after any iteration. This is done on the basis of a stimulus sig-
nal of the used image and the preceding state of the network. 

Modelling and evaluation of models 

The settings of the PCNN parameters are of great significance
when training the network for a certain task. The amount of
parameters to control and handle is the main weakness of the
PCNN according to Becanovic (2000). However, typically only
a few parameters have to be adjusted to reach optimal settings
for a certain problem. Relevant studies have been carried out
by Székely & Lindblad (1998), but most often parameters have
to be adjusted by trial and error to work in an explicit way
(Becanovic 2000). The use of an experimental design study to
find out optimal settings is obviously a rational approach, as it
is shown in this, as well as previous, studies (Åberg & Jacobs-
son 2001). Recently researchers have focused on simplifying
PCNNs e.g. by developing adaptive parameter determination
(Bi et al 2004; Gu et al 2004a, b). 

In this study all calculations to produce PCNN time sig-
nals were performed using the PCNN image processing tool-
box for Matlab, freely available under a GNU general public
license (details can be requested from the authors). The fol-
lowing standard parameters were used for the sieved size
fractions: r0 = 3 (radius), b= 0.2 (linking coefficient),
VF =0.01, VL=1, VΘ=2, decay constants aL=1, aΘ=10 and
aF=0.001. The choice of parameters tested was based on sug-
gestions in the available literature, while all other settings were
set as explained previously. In total, 2754 PCNN time signals
were produced (34 batches of granulations × 27 different PCNN
settings × 3 replicate images). The relation between the PCNN
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Figure 1 Simplified PCNN pulse neuron.
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time signals and the particle size distribution (weight proportion
on twelve sieves) was modelled by partial least squares (PLS)
regression, using the Simca version 10.5 software (Umetrics AB,
Sweden). PLS relates two data matrices, X and Y, to each other
by a multivariate model. In this study X was the PCNN time sig-
nal and Y was the sieve analysis results. The PCNN time signals
were used as explanatory variables and the percent mass propor-
tion of the measured 12 sieve fractions were used as the response
variables. As a result we received a 12-fraction particle size dis-
tribution calculated from one image. This size distribution could
then be used for calculating other particle size parameters e.g. the
mean particle size. 

For the training set granule batches, a 33 experimental design
matrix was used to investigate the relevance of different settings of
the PCNN calculations and to find which values produced the best
PLS model. The three levels of r0 used were 1, 3 and 5, the levels
of b were 0.1, 0.2 and 0.4, and the levels of Vq were 2, 10 and 20.
The 27 different combinations of PCNN settings were evaluated
using batches R1, R6, R9, R20, R21, R23, R30 and R31 as a test
set, on the basis of the RMSEP (root mean squared error of predic-
tion) values of the PLS models, calculated as follows:

where yp is the predicted value for each size fraction, yr the
measured value for each size fraction and n is the number of
experiments. Multilinear stepwise regression analysis was
used to study the dependence of response variable (RMSEP)
on the r0, b and Vθ values of the eight-batch test set, using the
Modde software (Modde for Windows, v. 3.0, Umetri AB,
Sweden). The best model was selected to be used in calcula-
tion of particle size distributions from the test set images. 

Dependence of PCNN time signal and 
particle size 

Figure 3 shows the surface images for four different sieve
fractions of granules together with the respective PCNN
time signals. They clearly exemplify the size dependency

of the time signals. In general, a first highest relatively
narrow peak located in the region of two to twelve itera-
tions corresponds to smaller particle size. Larger particles
result in wider peaks, in general, and in highest (not first)
peak at a range between 13 and 25 iterations. In other
words, the time signals are more pulse-like for smaller par-
ticles, i.e. reach high acute angled peaks and return almost
to zero, whereas with increasing particle size the pulsation
shows smaller variation. Further size related differences of
the time signals may be evaluated using Principal Compo-
nent Analysis, but such an approach was considered out of
the scope of this study. 

Optimization of PCNN parameters 

The mean RMSEP values calculated from the three replicate
images of each of the eight test set batches varied between 2.5
and 8.5 (Table 1). The overall RMSEP value of the test set for
each created model was used in the regression modelling.
Test set granulations with a mean particle size between 250
and 450 mm had lower RMSEP values probably because
batches with a similar mean particle size (and size distribu-
tion) were predominant (Table 2). Higher RMSEP, ranging
from 5 to 8.5, were found for batches whose particle size
range was under represented in the model, such as R23 (mean
particle size 586 mm) and R9 (1185 mm). Therefore, a larger
number of granulations representing coarser particle sizes
would obviously be important for creation of enhanced mod-
els in future studies. The relationships between the response

Results and Discussion
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Figure 2 Left: a stimulus (input) image. Middle: a pulse image output after 20 iterations in which particle edges can clearly be detected. Right: final
output, a time signal created by the PCNN.
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Table 1 The particle mean size values for predicted (by the PCNN
model) vs observed (measured with sieving) 

Batch Predicted (mm) ± s.d. Observed (mm) ± s.d. 

R1 0.390 ± 3.2 0.416 ± 6.9 
R6 0.248 ± 4.3 0.239 ± 2.8 
R9 1.085 ± 23.0 1.185 ± 17.0 
R20 0.468 ± 3.4 0.350 ± 5.2 
R21 0.288 ± 2.3 0.316 ± 9.1 
R23 0.656 ± 34.0 0.586 ± 69.2 
R30 0.310 ± 7.2 0.289 ± 11.9 
R31 0.268 ± 5.4 0.280 ± 10.3 
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variable (RMSEP) and the number of iterations, as well as
between RMSEP and the values of the adjustable parame-
ters (r0, b and VΘ) obtained by the multilinear regression
modelling showed clear trends in optimal PCNN parameters
to be used. In summary, within the tested range, the use of
high b value and low r0 and low VΘ values gave better mod-
els, i.e. lower RMSEP values. Regarding the number of iter-
ations it has to be above 110 to acquire the best model. This
is in agreement with the findings of Åberg & Jacobsson
(2001), who also developed a PLS model for 3D molecular
images and the PCNN spectra, and found that the predictive
ability of their model increased from 40 to 110–130 itera-
tions. A contour plot presenting the combined effects of VΘ

and number of iterations for the higher b value (0.4) and the
lower r0 value (1), Figure 4, shows clearly that the best
model (RMSEP lower than 5) may be obtained with a VΘ

value lower than 2.5 and when the number of iterations is
between 140 and 178. This finding may be explained by the
tendency of small VΘ values to synchronize regions,
whereas larger VΘ values spread spikes apart (Lindblad et al
1997). Also, it is in agreement with the finding of Åberg &
Jacobsson (2001), who reported that when VF was too large,
compared with VΘ, the neurons were able to spike several
times in a row and the segmentation ability of the PCNN
was degraded. 

Prediction of granule size and size distribution 
from PCNN spectra 

The model with the optimal PCNN variables giving the best
overall response in RMSEP values was chosen to be used in
particle size and size distribution measurement of granules.
The PCNN settings of the chosen model were: r0 = 1 (radius),
b = 0.4 (linking coefficient), VΘ = 2, and number of
iterations = 150. The coefficient of determination (R2) of the
model was 0.94 and the predicted variation (Q2) was 0.91.
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Figure 3 Examples of PCNN time signals for four different sieve fractions (size range indicated on the image) exemplifying the particle size
dependency of the PCNN output. The corresponding time signal is situated on the right side of each image. 

Table 2 Mean particle size of the fluidized bed granulations experi-
mentally determined by sieve analysis. 

Batches R8 and R11 were unsuccessful granulations and were therefore
not presented.

Batch Particle mean size (mm) ± s.d. 

R1 416 ± 6.9 
R2 1147 ± 44.5 
R3 622 ± 15.2 
R4 260 ± 9.2 
R5 266 ± 7.2 
R6 239 ± 2.8 
R7 1413 ± 202.0 
R9 1.185 ± 17.0 
R10 241 ± 3.6 
R12 246 ± 5.8 
R13 282 ± 6.3 
R14 273 ± 2.7 
R15 289 ± 1.0 
R16 331 ± 5.5 
R17 390 ± 3.2 
R18 293 ± 8.8 
R19 412 ± 25.1 
R20 350 ± 5.2 
R21 316 ± 9.1 
R22 276 ± 70.3 
R23 586 ± 69.2 
R24 592 ± 76.6 
R25 603 ± 21.8 
R26 223 ± 7.2 
R27 616 ± 14.3 
R28 237 ± 11.4 
R29 557 ± 39.7 
R30 289 ± 11.9 
R31 280 ± 10.3 
R32 356 ± 25.0 
R34 233 ± 7.2 
R35 294 ± 3.9 
R36 295 ± 4.8 
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The predictive power was calculated according to cross-
validation. The Pearson correlation coefficient between the
predicted and the measured mean particle size by sieving of
the eight test batches was 0.98 (Table 1). 

Taking into consideration that for quantitative measure-
ments the creation and the inspection of the imaged surface in
a controlled and reproducible manner is very important, this
study shows that PCNN can be used to form textural finger-
prints for surface images, which then can be used in sizing of
particles. The results obtained can be characterized as promis-
ing and encouraging for the further use of image analysis by
PCNNs in pharmaceutical bulk particle size and shape char-
acterization. Feasible areas of study can be found in measure-
ment of particle morphology including shape and roughness
and this is also justified by the effort of many researchers to
establish suitable automated systems and to design digital and
optical hardware. 

Conclusions 

This first attempt of PCNN for use in bulk determination of
particle size and size distribution based on textural finger-
prints of surface images demonstrated its feasibility for
pharmaceutical granules. The PCNN adjustable parameters
may be successfully optimized using standard design of
experiment methodology. The PCNN produced granule
size-dependent time signals. In general, a first highest and
relatively narrow peak located in the region of two to twelve
iterations corresponded to smaller particle size, while larger
particles resulted in wider peaks and in highest (not first) peak
at a range between 13 and 25 iterations. Better predictions,
i.e. lower RMSEP values, were obtained using a high b value
and low r0 and Vθ values, while the number of iterations had

to exceed 110 and the optimized model (RMSEP lower than
5) corresponded to PCNN variables: r0 = 1 (radius), b= 0.4
(linking weight coefficient), VΘ = 2 (local threshold potential),
and number of iterations = 150. The coefficient of determina-
tion (R2) of the model was 0.94 and the predicted variation
(Q2) was 0.91, while the Pearson correlation coefficient
between the predicted and the measured mean particle size by
sieving for eight test batches was 0.98. These findings can be
characterized as promising and encouraging for the further
use of image analysis by PCNNs in pharmaceutical bulk
particle size and shape characterization. 
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